

30V Complementary Enhancement-Mode MOSFET				
General Description	Product Summary			
• Low gate charge.	N-Channel	P-Channel		
• Use as a load switch.	• BV _{DSS} = 30V • BV _{DSS} = -30V			
Use in PWM applications	• R _{DS(on)} (@VGS= 10V) < 30mΩ	• R _{DS(on)} (@VGS= -10V) < 28mΩ		
	• R _{DS(on)} (@VGS= 4.5V) < 42mΩ	• $R_{DS(on)}$ (@VGS= -4.5V) < 44m Ω		
SOP-8 D1 D1 D2 D2 Pin1 S1 G1 S2 G2		$ \begin{array}{c} $		

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Parameter	Symbol	Maxi	Units	
Falameter	Symbol	N-Channel	P-Channel	Onits
Drain-Source Voltage	V _{DS}	30	-30	V
Gate-Source Voltage	V _{GS}	±20	±20	V
Drain Current (T _A =25°C)		6	-6.5	А
Drain Current (T _A =75°C)	ID	4	-4.5	А
Pulsed Drain Current ^a	I _{DM}	24	-28	А
Power Dissipation ^b (T _A =25°C)		2.5	2.5	W
Power Dissipation ^b (T _A =75°C)	P _D	1.0	1.0	W
Junction and Storage Temperature Range	T _{J,} T _{STG}	-55 ~ +150	-55 ~ +150	°C

Thermal Characteristics						
Parameter	Maximu		mum	- Units		
	Symbol	N-Channel	P-Channel	Units		
Junction-to-Ambient ^a (t ≤ 10s)		50	60	°C/W		
Junction-to-Ambient ^{a,d} (Steady-State)	R _{θJA}	80	90	°C/W		
Junction-to-Lead (Steady-State)	R _{θJL}	25	35	°C/W		

SWK4606

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Off Char	acteristics					
BV_{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0V , I _D = 250uA	30			V
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} = 24V , V_{GS} = 0V			1	uA
I _{GSS}	Gate-Body Leakage Current	V_{GS} = ±20V, V_{DS} = 0V			±100	nA
On Char	acteristics					
$V_{GS(th)}$	Gate Threshold Voltage	V_{DS} = V_{GS} , I_D = 250 uA	1		2.5	V
D	R _{DS(ON)}) Drain-Source On-State Resistance	V_{GS} = 10V , I_D = 6A			30	mΩ
RDS(ON))		V_{GS} = 4.5V , I _D = 5A			42	mΩ
g fs	Forward Transconductance	V_{DS} = 10V , I_D = 6A		30		S
Drain-So	ource Diode Characteristics					
V_{SD}	Diode Forward Voltage	V_{GS} = 0V , I _S = 1.0A			1.2	V
ls	Maximum Body-Diode Continuous	Current			2.5	А
Dynamic	Characteristics					
C _{iss}	Input Capacitance	V _{DS} = 15V , V _{GS} = 0V f = 1.0MHz		740		pF
C _{oss}	Output Capacitance			186		pF
C _{rss}	Reverse Transfer Capacitance			82		pF
Switchin	g Characteristics					
Qg	Total Gate Charge			15		nC
Q_{gs}	Gate-Source Charge	V _{DS} = 15V , I _D = 6A V _{GS} = 10V		2.5		nC
Q_{gd}	Gate-Drain Charge			3.3		nC
t _{D(ON})	Turn-On Delay Time	V _{DD} = 15V , ID = 1A V _{GS} = 10 V R _{GEN} = 3 ohm		11		ns
tr	Turn-On Rise Time			6		ns
$t_{D(OFF)}$	Turn-Off Delay Time			27		ns
t _f	Turn-Off Fall Time			12		ns

a. Repetitive rating, Pulse width limited by junction temperature T_{J(MAX)}=150 °C. Ratings are based on low frequency and duty cycles to keep initial T_J=25 °C

b. The power dissipation P_D is based on $T_{J(MAX)} = 150\ ^{o}C$, using $\leqslant 10s$ junction-to-ambient thermal resistance.

c. The value of R_{0JA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A = 25°C. The value in any given application depends on the user's specific board design.

d. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

SWK4606

Symbol	Parameter	Conditions	Min	Тур	Мах	Units
Off Char	acteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0V , I _D = -250uA	-30			V
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} = -24V , V_{GS} = 0V			-1	uA
I _{GSS}	Gate-Body Leakage Current	V_{GS} = ±20V, V_{DS} = 0V			±100	nA
On Chara	acteristics					
$V_{GS(th)}$	Gate Threshold Voltage	V_{DS} = V_{GS} , I_D = -250 uA	-1		-2.5	V
	Drain-Source On-State Resistance	V_{GS} = -10V , I_D = -6.5A			28	mΩ
		V_{GS} = -4.5V , I_D = -5.5A			44	mΩ
g fs	Forward Transconductance	$V_{DS} = -10V$, $I_{D} = -6.5A$		24		S
Drain-So	ource Diode Characteristics					
V_{SD}	Diode Forward Voltage	$V_{GS} = 0V$, $I_S = -1.0A$			-1.2	V
Is	Maximum Body-Diode Continuous	Current			-2.5	А
Dynamic	Characteristics					
C _{iss}	Input Capacitance	V _{DS} = -15V , V _{GS} = 0V f = 1.0MHz		1490		pF
Coss	Output Capacitance			301		pF
C _{rss}	Reverse Transfer Capacitance			190		pF
Switchin	g Characteristics					
Qg	Total Gate Charge			26		nC
Q_gs	Gate-Source Charge	V _{DS} = -15V , I _D = -6.5A V _{GS} = -10V		4		nC
Q_{gd}	Gate-Drain Charge			5		nC
t _{D(ON})	Turn-On Delay Time	V _{DD} = -15V , ID = -1A V _{GS} = -10 V R _{GEN} = 6 ohm		10		ns
tr	Turn-On Rise Time			5.5		ns
$t_{D(OFF)}$	Turn-Off Delay Time			26		ns
t _f	Turn-Off Fall Time			9		ns

a. Repetitive rating, Pulse width limited by junction temperature T_{J(MAX)}=150 °C. Ratings are based on low frequency and duty cycles to keep initial T_J=25 °C

b. The power dissipation P_D is based on $T_{J(MAX)}\text{=}150~^{o}\text{C}$, using ${\leqslant}10\text{s}$ junction-to-ambient thermal resistance.

c. The value of $R_{\theta,JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with $T_A = 25^{\circ}$ C. The value in any given application depends on the user's specific board design.

d. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.