

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

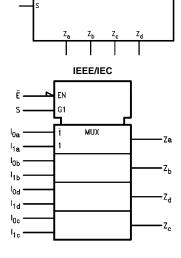
November 1988 Revised November 1999

74AC157 • 74ACT157 Quad 2-Input Multiplexer

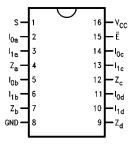
General Description

The AC/ACT157 is a high-speed quad 2-input multiplexer. Four bits of data from two sources can be selected using the common Select and Enable inputs. The four outputs present the selected data in the true (noninverted) form. The AC/ACT157 can also be used as a function generator.

Features


- \blacksquare I_{CC} and I_{OZ} reduced by 50%
- Outputs source/sink 24 mA
- ACT157 has TTL-compatible inputs

Ordering Code:


Order Number	Package Number	Package Description
74AC157SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body
74AC157SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74AC157MTC	MTC16	16 -Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74AC157PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
74ACT157SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body
74ACT157SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ACT157MTC	MTC16	16 -Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ACT157PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

Pin Descriptions

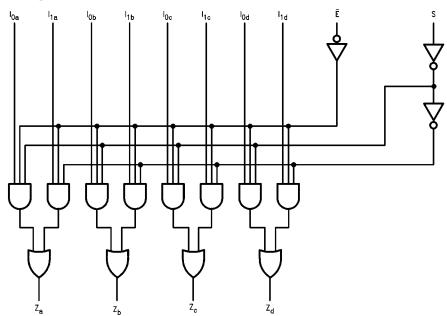
Pin Names	Description
I _{0a} –I _{0d}	Source 0 Data Inputs
I _{1a} –I _{1d}	Source 1 Data Inputs
Ē	Enable Input
S	Select Input
Z _a –Z _d	Outputs

FACT™ is a trademark of Fairchild Semiconductor Corporation.

Functional Description

The AC/ACT157 is a quad 2-input multiplexer. It selects four bits of data from two sources under the control of a common Select input (S). The Enable input (\overline{E}) is active-LOW. When \overline{E} is HIGH, all of the outputs (Z) are forced LOW regardless of all other inputs. The AC/ACT157 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

$$\begin{split} Z_a &= \overline{E} \bullet (I_{1a} \bullet S + I_{0a} \bullet \overline{S}) \\ Z_b &= \overline{E} \bullet (I_{1b} \bullet S + I_{0b} \bullet \overline{S}) \\ Z_c &= \overline{E} \bullet (I_{1c} \bullet S + I_{0c} \bullet \overline{S}) \\ Z_d &= \overline{E} \bullet (I_{1d} \bullet S + I_{0d} \bullet \overline{S}) \end{split}$$


A common use of the AC/ACT157 is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select input. A less obvious use is as a function generator. The AC/ACT157 can generate any four of the sixteen different functions of two variables with one variable common. This is useful for implementing gating functions.

Truth Table

	Inputs						
Ē	S	I ₀	I ₁	Z			
Н	Х	Х	Х	L			
L	Н	Х	L	L			
L	Н	Х	Н	Н			
L	L	L	Χ	L			
L	L	Н	X	Н			

H = HIGH Voltage Level

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

L = LOW Voltage Level X = Immaterial

Absolute Maximum Ratings(Note 1)

Supply Voltage (V_{CC}) -0.5V to +7.0V

DC Input Diode Current (I_{IK})

 $\begin{array}{ccc} \text{V}_{\text{I}} = -0.5 \text{V} & -20 \text{ mA} \\ \text{V}_{\text{I}} = \text{V}_{\text{CC}} + 0.5 \text{V} & +20 \text{ mA} \\ \text{DC Input Voltage (V}_{\text{I}}) & -0.5 \text{V to V}_{\text{CC}} + 0.5 \text{V} \end{array}$

DC Output Diode Current (I_{OK})

 $V_{O} = -0.5V$ -20 mA $V_{O} = V_{CC} + 0.5V$ +20 mA

DC Output Voltage (V_O) -0.5V to $V_{CC} + 0.5V$

DC Output Source

or Sink Current (I_O) ± 50 mA

DC V_{CC} or Ground Current

per Output Pin (I_{CC} or I_{GND}) ± 50 mA Storage Temperature (T_{STG}) -65°C to $+150^{\circ}\text{C}$

Junction Temperature (T_J)

PDIP 140°C

Recommended Operating Conditions

Supply Voltage (V_{CC})

Operating Temperature (T_A) -40°C to +85°C

Minimum Input Edge Rate $(\Delta V/\Delta t)$

AC Devices

 V_{IN} from 30% to 70% of V_{CC}

V_{CC} @ 3.3V, 4.5V, 5.5V 125 mV/ns

Minimum Input Edge Rate ($\Delta V/\Delta t$)

ACT Devices

V_{IN} from 0.8V to 2.0V

V_{CC} @ 4.5V, 5.5V 125 mV/ns

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACTTM circuits outside databook specifications.

DC Electrical Characteristics for AC

Symbol	Parameter	V _{CC}	$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions	
Symbol		(V)	Тур	Guaranteed Limits		Ullits		
V _{IH}	Minimum HIGH Level	3.0	1.5	2.1	2.1		V _{OUT} = 0.1V	
	Input Voltage	4.5	2.25	3.15	3.15	V	or V _{CC} – 0.1V	
		5.5	2.75	3.85	3.85			
V _{IL}	Maximum LOW Level	3.0	1.5	0.9	0.9		V _{OUT} = 0.1V	
	Input Voltage	4.5	2.25	1.35	1.35	V	or V _{CC} – 0.1V	
		5.5	2.75	1.65	1.65			
V _{OH}	Minimum HIGH Level	3.0	2.99	2.9	2.9			
	Output Voltage	4.5	4.49	4.4	4.4	V	$I_{OUT} = -50 \mu A$	
		5.5	5.49	5.4	5.4			
							$V_{IN} = V_{IL}$ or V_{IH}	
		3.0		2.56	2.46		$I_{OH} = -12 \text{ mA}$	
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$	
		5.5		4.86	4.76		$I_{OH} = -24 \text{ mA (Note 2)}$	
V _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1			
	Output Voltage	4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \mu A$	
		5.5	0.001	0.1	0.1			
							$V_{IN} = V_{IL}$ or V_{IH}	
		3.0		0.36	0.44		I _{OL} = 12 mA	
		4.5		0.36	0.44	V	I _{OL} = 24 mA	
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)	
I _{IN}	Maximum Input	5.5		±0.1	±1.0	μА	$V_1 = V_{CC}$, GND	
(Note 4)	Leakage Current	3.3		±0.1	11.0	μΛ	VI = VCC, GIVD	
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max	
I _{OHD}	Output Current (Note 3)	5.5			-75	mA	V _{OHD} = 3.85V Min	
I _{CC}	Maximum Quiescent	5.5		4.0	40.0	μА	$V_{IN} = V_{CC}$	
(Note 4)	Supply Current	3.3		4.0	40.0	μΛ	or GND	

Note 2: All outputs loaded; thresholds on input associated with output under test.

Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

Note 4: I_{IN} and $I_{\text{CC}} @ 3.0 \text{V}$ are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC} .

DC Characteristics for ACT $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to $+85^{\circ}C$ v_{cc} Units Conditions Symbol (V) **Guaranteed Limits** Тур Minimum HIGH Level 4.5 1.5 2.0 $\overline{V_{OUT}} = 0.1V$ 5.5 1.5 2.0 or $V_{CC} - 0.1V$ V_{IL} Maximum LOW Level 4.5 1.5 8.0 0.8 $V_{OUT} = 0.1V$ ٧ Input Voltage 5.5 1.5 0.8 0.8 or $V_{CC} - 0.1 V$ Minimum HIGH Level 4.5 4.49 4.4 4.4 V_{OH} $I_{OUT} = -50~\mu\text{A}$ Output Voltage 5.5 5.49 5.4 5.4 $V_{IN} = V_{IL}$ or V_{IH} 4.5 3.86 3.76 V $I_{OH} = -24 \text{ mA}$ $I_{OH} = -24 \text{ mA (Note 5)}$ 5.5 4.86 4.76 V_{OL} Maximum LOW Level 4.5 0.1 0.1 $I_{OUT} = 50 \; \mu A$ Output Voltage 0.1 0.1 $V_{IN} = V_{IL}$ or V_{IH} 4.5 0.44 ٧ $I_{OL} = 24 \text{ mA}$ 0.36 5.5 0.36 I_{OL} = 24 mA (Note 5) 0.44 Maximum Input I_{IN} 5.5 ±0.1 ±1.0 $V_I = V_{CC}$, GND μΑ Leakage Current I_{CCT} Maximum 5.5 0.6 1.5 $V_I = V_{CC} - 2.1 V \,$ mΑ I_{CC}/Input $\overline{V_{OLD}} = 1.65V \text{ Max}$ 75 Minimum Dynamic 5.5 mΑ I_{OLD} V_{OHD} = 3.85V Min Output Current (Note 6) 5.5 -75 I_{OHD} mΑ Maximum Quiescent $V_{IN} = V_{CC}$ Icc 4.0 40.0 or GND

Note 5: All outputs loaded; thresholds on input associated with output under test.

Note 6: Maximum test duration 2.0 ms, one output loaded at a time.

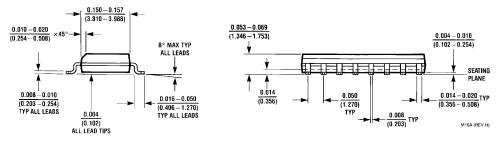
Supply Current

AC Electrical Characteristics for AC

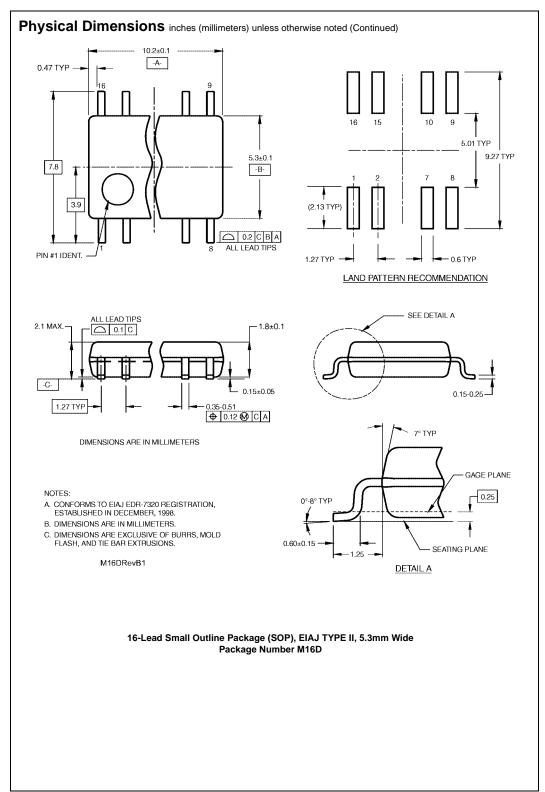
		v _{cc}		T _A = +25°C		T _A = -40°	C to +85°C	
Symbol	Parameter	(V) C _L = 50 pF			$C_L = 50 \text{ pF}$		Units	
		(Note 7)	Min	Тур	Max	Min	Max	•
t _{PLH}	Propagation Delay	3.3	1.5	7.0	11.5	1.5	13.0	ns
	S to Z _n	5.0	1.5	5.5	9.0	1.5	10.0	115
t _{PHL}	Propagation Delay	3.3	1.5	6.5	11.0	1.5	12.0	ns
	S to Z _n	5.0	1.5	5.0	8.5	1.0	9.5	l lis
t _{PLH}	Propagation Delay	3.3	1.5	7.0	11.5	1.5	13.0	
	E to Z _n	5.0	1.5	5.5	9.0	1.5	10.0	ns
t _{PHL}	Propagation Delay	3.3	1.5	6.5	11.0	1.5	12.0	
	E to Z _n	5.0	1.5	5.5	9.0	1.0	9.5	ns
t _{PLH}	Propagation Delay	3.3	1.5	5.0	8.5	1.0	9.0	ns
	I_n to Z_n	5.0	1.5	4.0	6.5	1.0	7.0	115
t _{PHL}	Propagation Delay	3.3	1.5	5.0	8.0	1.0	9.0	ns
	I_n to Z_n	5.0	1.5	4.0	6.5	1.0	7.0	110

Note 7: Voltage Range 3.3 is 3.3V ± 0.3V Voltage Range 5.0 is 5.0V $\pm\,0.5V$

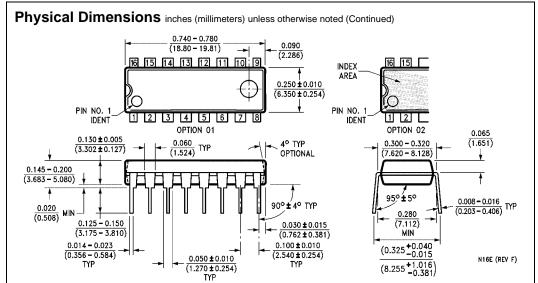
AC Electrical Characteristics for ACT


	Parameter	V _{CC}	T _A = +25°C C _L = 50 pF			$T_A = -40$ °C to +85°C $C_L = 50$ pF		Units
Symbol		(V)						
		(Note 8)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	5.0	2.0	5.5	9.0	1.5	10.0	ns
	S to Z _n	3.0	2.0	5.5	3.0	1.5	10.0	115
t _{PHL}	Propagation Delay	5.0	2.0	5.5	9.5	2.0	10.5	ns
	S to Z _n	3.0						
t _{PLH}	Propagation Delay	F.0	1.5	6.0	10.0	1.5	44.5	
	E to Z _n	5.0	1.5	6.0	10.0	1.5	11.5	ns
t _{PHL}	Propagation Delay	5.0	1.5 5.0	5.0	0.5	1.0	0.0	
	Ē to Z _n			8.5	1.0	9.0	ns	
t _{PLH}	Propagation Delay	5.0	1.5	4.0	7.0	1.0	8.5	ns
	I_n to Z_n	5.0	1.5					
t _{PHL}	Propagation Delay	5.0	1.5	4.5	7.5	1.0	8.5	ns
	I_n to Z_n	3.0	1.5	4.5				

Note 8: Voltage Range 5.0 is 5.0V ± 0.5V


Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	50.0	pF	V _{CC} = 5.0V



16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body Package Number M16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) DIMENSIONS METRIC ONLY 0.42 TYP LAND PATTERN RECOMMENDATION GAGE PLANE 6.4 0.25 4.4 ± 0.1 -B-3.2 SEATING PLANE 0.6 ± 0.1 DETAIL A TYPICAL, SCALE: 40X △ 0.2 C B A ALL LEAD TIPS SEE DETAIL A PIN #1 IDENT. (0.90) △ 0.1 C 0.09-0.20 TYP 0.10 ± 0.05 TYP 0.19 - 0.30 TYP 0.13 M B (S) c (S) Α MTC16 (REV C) 16- Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC16

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative