阅读量:321
低噪声放大器是一种用于增强微小信号并尽可能减少噪声的电路。其主要原理包括尽可能减小噪声系数、选择合适的放大倍数和频带等。
1.降低噪声系数
噪声系数是输入信号与输出信号之间的信噪比(SNR)变化的度量。为了减少系统中的噪声,应该尽量降低噪声系数。方法包括使用低噪声元件、匹配电路和尽量选用合适温度下工作等。
2.选择合适的放大倍数和频带
放大倍数过小时,微小信号难以被识别,而过大则可能会引入更多的噪声。因此需要选择合适的放大倍数。另外,低噪声放大器的频带宽度也需要根据具体信号特征进行调整。
低噪声放大器设计步骤
低噪声放大器设计需要经历多个步骤,包括确定应用、选择合适的电路结构和元件、优化参数和进行实验验证等。
1.确定应用
首先需要明确所要应用的具体场景和信号特征,比如信号频率、电压范围等。同时还需要确定系统性能指标,如增益、噪声系数等。
2.选择合适的电路结构和元件
根据具体应用需求,可以选择不同的电路结构和元件组成放大器电路。比较常见的包括共源极放大器、共基极放大器、共射极放大器、磁控管等。
3.优化参数
在确定电路结构和元件后,需要对各项参数进行综合考虑并进行优化设计。最终需要得到合适的工作点、电路增益和带宽、输入输出阻抗等重要参数。
4.进行实验验证
完成设计后,需要进行实验验证以评估系统性能和符合度。并根据实际效果对系统进行调节和优化。
1 定性分析
1.1 晶体管的建模
通过网络可以查阅晶体管生产厂商的相关资料,可以下载厂商提供的该款晶体管模型,也可以根据实际需要下载该管的S2P文件。本例采用直接将该管的S2P文件导入到软件中,利用S参数为模型设计电路。如果是第一次导入,则可以利用模块S-Params进行S参数仿真,观察得到的S参数与S2P文件提供的数据是否相同,同时,测量晶体管的输入阻抗与对应的最小噪声系数,以及判断晶体管的稳定性等,为下一步骤做好准备。
1.2 晶体管的稳定性
对电路完成S参数仿真后,可以得到输入/输出端的mu在频率2~2.2 GHz之间均小于1,根据射频相关理论,晶体管是不稳定的。通过在输出端并联一个10 Ω和5 pF的电容,m2和m3的值均大于1,如图1,图2所示。晶体管实现了在带宽内条件稳定,并且测得在2.1 GHz时的输入阻抗为16.827-j16.041。同时发现,由于在输出端加入了电阻,使得Fmin由0.48增大到0.573,Γopt为0.329∠125.99°,Zopt=(30.007+j17.754)Ω。其中,Γopt是最佳信源反射系数。
其中
输入电路谐振时,
在LNA处于一定的偏置和器件尺寸的条件下,通过调整电感Ls的大小使得输入阻抗中的实部等于50 ?,即可实现输入端的阻抗匹配,而且此时产生的实部不是一个实际的电阻,因此不用担心由实际电阻而产生的热噪声,所以不会对放大器的噪声性能产生影响。通过调整Lg和Ct的大小使输入阻抗的虚部的感抗和容抗相互抵消,使得输入阻抗的虚部为零。从式(7)可以看出,在晶体管M1的栅极和源极之间并联一个电容Cex后,所需要的栅极电感的值减小。
客服热线
400-618-9990 / 13621148533
官方微信
关注微信公众号