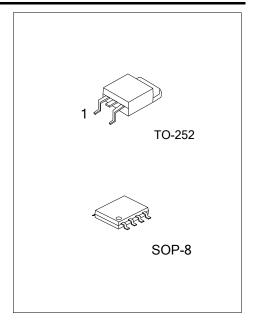


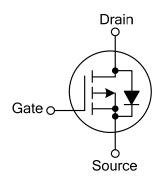
UNISONIC TECHNOLOGIES CO., LTD


UT9564 **Power MOSFET**

-40V, -7.3A P-CHANNEL **ENHANCEMENT MODE POWER MOSFET**

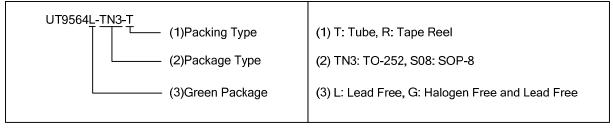
DESCRIPTION

The UTC UT9564 is a P-ch enhancement mode power MOSFET and it uses UTC perfect technology to provide customers with fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

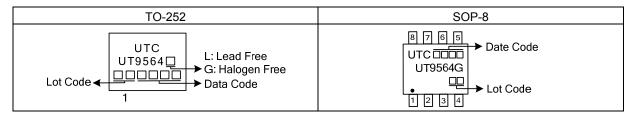

The UTC UT9564 is ideal for applications such as low voltage applications, DC/DC converters and all commercial-industrial surface mount applications.

FEATURES

- * Simple Drive Requirement
- * Fast Switching Speed
- * Low On-Resistance


SYMBOL

ORDERING INFORMATION


Ordering Number		Dookogo	Pin Assignment							Dooking		
Lead Free	Halogen Free	Package	1	2	3	4	5	6	7	8	Packing	
UT9564L-TN3-R	UT9564G-TN3-R	TO-252	G	D	S	1	-	-	-	-	Tape Reel	
-	UT9564G-S08-R	SOP-8	S	S	S	G	D	D	D	D	Tape Reel	

Pin Assignment: G: Gate D: Drain Note: S: Source

www.unisonic.com.tw 1 of 4 UT9564

■ MARKING

ABSOLUTE MAXIMUM RATINGS

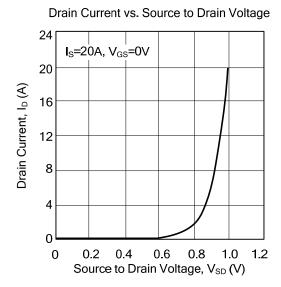
PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DS}	-40	V
Gate-Source Voltage		V_{GS}	±25	V
Continuous Drain Current (Note 2)	T _A =25°C	1	-7.3	Α
Continuous Drain Current (Note 2)	T _A =70°C	I _D	-5.9	Α
Pulsed Drain Current (Note 1)		I _{DM}	-30	Α
Dower Dissipation (T =25°C)	TO-252	- P _D	2	W
Power Dissipation (T _A =25°C)	SOP-8		2.5	VV
Linear Derating Factor			0.02	W/°C
Junction Temperature		T_J	-55 ~150	°C
Storage Temperature		T _{STG}	-55 ~150	°C

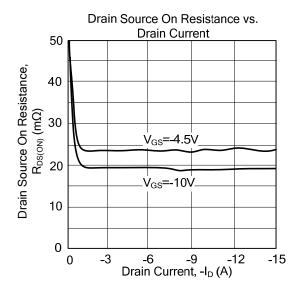
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT	
lunction to Ambient (Note 2)	TO-252	0	62.5	°C/W	
Junction to Ambient (Note 2)	SOP-8	$\Theta_{ m JA}$	50		

ELECTRICAL CHARACTERISTICS (T_J =25°C, unless otherwise specified)


	, .	· · · · · · · · · · · · · · · · · · ·		t	1	1			
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =-250μA, V _{GS} =0V	-40			V			
Breakdown Voltage Temperature Coefficient	$\triangle BV_{DSS}/\triangle T_{J}$	Reference to 25°C, I _D =-1mA		-0.03		V/°C			
Drain-Source Leakage Current	I _{DSS}	V _{DS} =-40V, V _{GS} =0V, T _J =25°C			-1	μA			
Drain-Source Leakage Current	idss	V _{DS} =-32V, V _{GS} =0V, T _J =70°C			-25	μΛ			
Gate- Source Leakage Current	I_{GSS}	V _{GS} =±25V			±100	nA			
ON CHARACTERISTICS									
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$	-1		-3	V			
Static Drain-Source On-State Resistance	В	V_{GS} =-10V, I_D =-7A			28	mΩ			
(Note)	R _{DS(ON)}	V _{GS} =-4.5V, I _D =-5A			40	11177			
Forward Transconductance	g FS	V_{DS} =-10V, I_{D} =-7A		13		S			
DYNAMIC PARAMETERS									
Input Capacitance	C _{ISS}	V _{GS} =0V, V _{DS} =-25V, -f=1.0MHz		2240	3600	pF			
Output Capacitance	Coss			300		рF			
Reverse Transfer Capacitance	C _{RSS}			250		pF			
SWITCHING PARAMETERS									
Total Gate Charge (Note)	Q_G			27	43	nC			
Gate to Source Charge	Q _{GS}	V_{GS} =-4.5V, V_{DS} =-32V, I_{D} =-7A		6		nC			
Gate to Drain Charge	Q_{GD}	1		14		nC			
Turn-ON Delay Time (Note)	t _{D(ON)}			14		ns			
Rise Time	t _R	V_{GS} =-10V, V_{DS} =-20V, I_{D} =-1A,		8		ns			
Turn-OFF Delay Time	t _{D(OFF)}	$R_G=3.3\Omega$, $R_D=20\Omega$		46		ns			
Fall-Time	t _F	1		17		ns			
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS									
Maximum Body-Diode Continuous Current	Is				-7.3	Α			
Maximum Body-Diode Pulsed Current	I _{SM}				-30	Α			
Drain-Source Diode Forward Voltage (Note)	V _{SD}	I _S =-2A, V _{GS} =0V			-1.2	V			
Reverse Recovery Time (Note)	t _{RR}	I _S =-7A, V _{GS} =0V,		144		ns			
Reverse Recovery Charge	Q _{RR}	dl/dt=100A/µs		110		nC			
		•			•				


Note: Pulse width $\leq 300\mu s$, duty cycle $\leq 2\%$.

Notes: 1. Pulse width limited by Max. junction temperature.

2. Surface mounted on 1 in² copper pad of FR4 board, t ≤10sec; 125°C /W when mounted on Min. copper pad.

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.